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Abstract
Macro embedding is a popular approach to defining exten-

sible shallow embeddings of object languages in Scheme-

like host languages. While macro embedding has even been

shown to enable implementing extensible typed languages

in systems like Racket, it comes at a cost: compile-time per-

formance. In this paper, we revisit micros—syntax to inter-

mediate representation (IR) transformers, rather than source

syntax to source syntax transformers (macros). Micro em-

bedding enables stopping at an IR, producing a deep embed-

ding and enabling high performance compile-time functions

over an efficient IR, before shallowly embedding the IR back

into source syntax. Combining micros with several design

patterns to enable the IR and functions over it to be exten-

sible, we achieve extensible hybrid embedding of statically

typed languages with significantly improved compile-time

compared to macro-embedding approaches. We describe our

design patterns and propose new abstractions packaging

these patterns.

CCS Concepts: • Software and its engineering → Exten-
sible languages; Software performance; Frameworks.

Keywords: Domain-specific languages, Compilers, Optimiza-

tion, Shallow Embedding, Deep Embedding, Hybrid Embed-

ding, Language-oriented Programming
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1 Introduction
Contemporary macro systems have features for linguistic

reuse and interposition, enabling macro embedding whole

general-purpose languages with sophisticated static type
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systems as libraries [21]. Macro embedding is even expres-

sive enough to enable user-extensible dependent type sys-

tems [6, 7].

However, macro embeddings can suffer serious perfor-

mance problems. Shallowly embedding object languages

through macros provides an elaboration into a host lan-

guage, but means there is never a direct representation of

the whole embedded language program. Exposing such a

representation would require stopping macro expansion at

some intermediate point and inverting the usual outside-in

order of macro expansion, or decompiling fully expanded

programs back into an intermediate representation. This

makes implementing optimizations, particularly non-local

transformations, difficult or impossible. Worse, it can dra-

matically affect compile time. By inverting expansion order,

stopping expansion, or decompiling, the eventually emitted

syntax objects will be re-expanded, resulting in worst-case

quadratic expansion cost, and thus quadratic time algorithms

for what would otherwise be a linear time AST traversal. As

we will show, this is particularly noticeable when embedding

typed languages with sophisticated type systems.

An alternative to shallow embedding, deep embedding,

would provide a full AST that could be traversed and manip-

ulated efficiently. Deep embeddings can even be integrated

with a macro system, so that the macro system essentially

provides the frontend, generating an full AST that can then

be manipulated efficiently, before finally shallowly embed-

ding back into the host language [1, 2]. Unfortunately, this

approach gives up on the extensibility of the IR (although

the source language remains macro-extensible).

In this paper, we present an approach to hybrid embed-

ding languages with good compile-time performance and

extensibility of both the surface language and internal rep-

resentation. We develop a taxonomy for extensibility, and

use it to compare and contrast our approach with the state

of the art. We revisit micros as a key abstraction for cre-

ating an extensible deeply embedded IR [14]. Our micros

target compile-time structs in Racket for an efficient AST

representation. For extensible manipulation of the object

language AST, we use generics to attach each compile-time

function (such as the type checker) to its AST node. We use

an extensibility pattern atop structs and generics to nav-

igate the expression problem [23], and propose as future

work two new abstractions packaging these patterns. This

enables users to extend the IR both with new nodes and their

compile-time functions, and override previous behaviour,
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similar to Racket objects but with better compile-time per-

formance. We present a brief case-study of a dependently

typed language micro embedded in Racket, extended with

gradual typing, and a brief performance analysis of the type

checker.

2 Related Work
To understand the language embedding design space, we

first survey existing tools for creating language embeddings,

which we refer to as embedding language frameworks (ELFs).

Turnstile. turnstile+ [5], a dependent-type-supporting

extension of the turnstile ELF described by Chang et al.

[8], uses Racket macros to provide object language extensi-

bility. turnstile+ encodes object language forms as macros

and performs type-checking operations as object languages

are macro-expanded into core Racket forms. Adding new

forms is as simple as importing a base language and defin-

ing new macros for new language forms. Since Racket’s

macros expander is open recursive, redefinition of old lan-

guage forms is almost as easy: elide old terms in the import

specification and define new terms with the same syntax.

Interoperability of object languages with Racket is also easy,

since everything expands into a shallow Racket embedding.

While turnstile+ offers good extensibility characteris-

tics, it fails to offer good compile time performance (see Sec-

tion 5.2). Since turnstile+ performs type checking during

macro expansion, the competing expansion orders of macro

expansion and type checking cause a worst-case quadratic

expansion time. Typically, macros are expanded in order

from outside in, meaning that in a run-of-the-mill macro

invocation a term is walked only once by Racket’s macro

expander. Type checking requires sub-terms be checked, and

thus expanded, prior to making a judgement on the type

of parent terms. Since sub-terms must be fully expanded

into Racket core syntax to be type checked, each term must

first be completely expanded, with each sub-term recursively

type checked, prior to its shallow embedding being walked

by Racket’s macro expander again after expansion.

In dependent type systems, like those targeted by

turnstile+, type checking is significantly more complex

than for simply typed languages, worsening performance.

Furthermore, type checking in turnstile+ is performed on

syntax objects, requiring the traversal and pattern matching

of an inefficient linked-list representation of the object lan-

guage AST. This incurs poor compile timememory allocation

and access performance when compared to a struct-based

AST implementation, and makes common optimizations like

in-place mutation impossible.

syntax-spec and ee-lib. syntax-spec [1] is an ELFwhich

provides a DSL for definingmacro-extensible object language

syntax, and generates its expansion into an object-language-

specific base language. syntax-spec is implemented in

Racket, and is built over ee-lib [2], a compatibility layer

between object languages and a host language’s macro and

binding system. Languages defined with syntax-spec ex-

pand into a base object language without performing type

checking or fully elaborating into core Racket syntax.

syntax-spec does not allow for extension of this base lan-

guage, instead opting for macro-extensibility of the object

language. Once elaborated into the base language, a program

written in the object language can then be compiled by any

method of the implementer wishes, even one which is non-

extensible. syntax-spec also allows an object language to

define boundary macros, with which object language users

can mix object and host language code.

Given the flexibility it affords in compiler design for the

base language, syntax-spec offers good compile time per-

formance; an object language implementer can use whatever

performant compiler design they wish for the base language,

unconstrained by the syntax-spec parsing and macro fron-

tend. If one were to type-check an object language defined

using syntax-spec, a type-checker over the base syntax

could be specified as part of the base language compiler, but

the syntax-spec framework does not provide any means to

extend that type-checker. This is in contrast to turnstile+,
which exposes type-checking semantics as an extensible part

of the object language.

LMS. Lightweight Modular Staging [19] (LMS for short)
is an ELF that directly exposes an object language as a host

language data structure, leveraging object-oriented design

to achieve extensibility. LMS is implemented as a Scala li-

brary, providing the Rep[_] type for wrapping staged object

language forms, allowing composition and manipulation of

object language programs using whatever means the lan-

guage implementer finds appropriate. LMS does not sepa-

rately define concrete syntax; instead the object language

syntax is that of the host language structure—a language

user directly writes the abstract syntax representation of

their object language program.

Consequentially, LMS encoded languages have no con-

crete syntax specification. A user of LMS can separately

specify concrete syntax using Scala’s macro system, which

in the context of LMS would function like syntax-spec’s
macro frontend, requiring elaboration into an LMS-encoded

object language. Unlike syntax-spec, this core language
could be extended via LMS.

3 Extensibility and Flexibility
While intuition reveals some differences in the ELFs we’ve

described, we must develop a taxonomy for describing exten-

sibility to specify our goals for our hybrid micro embedding.

We begin by defining notions of syntax and semantics, con-

sider embedding styles for ELFs, and then classify the ELFs

we’ve discussed by their support for the extension of object

languages in each of these three dimensions.
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3.1 A Taxonomy for Extensibility
To describe classes of extensions over languages, we must

first be able to describe languages.

Concrete syntax specifications dictate which strings are

valid program syntax, declaring what users must write to in-

teract with the features, binding forms, and lexical structures

of a programming language. Abstract syntax specifications

then declare the structure and organization of program syn-

tax.We think of syntax as a first filter: semantic specifications

can be used to reason about any well-formed piece of ab-

stract syntax, but not every well-formed piece of syntax is a

valid program.

Our notions of extensibility apply to anymeans of defining

abstract syntax specifications, but in our examples we use

the abstractions of syntax classes and meta-variables. Take
for example the abstract syntax definition for the 𝜆-calculus

in Figure 1. We group syntax using the meta-variables 𝑥

and 𝑡 , allowing us to refer to classes of valid abstract syntax

representing variables and expressions. Meta-variables allow

syntactic forms to be parameterized on all possible instances

of syntax of a particular class; for example the 𝑡 in the syntax

specification 𝑡 𝑡 denotes any possible expression. We use

term to refer to any piece of abstract syntax which abides by

a given object language’s syntax specification.

𝑥 ∈ Variable
𝑡 ::= 𝑥 | 𝜆𝑥.𝑡 | 𝑡 𝑡

𝑡 → 𝑡 ′

𝛽-red (𝜆𝑥.𝑡) 𝑡 ′ → 𝑡 [𝑥 ↦→ 𝑡 ′]

Figure 1. The 𝜆-calculus with (small-step) reduction seman-

tics, omitting 𝛼 , 𝜂, and substitution.

Semantic specifications are imposed on terms, encoding

properties of a language like which pieces of syntax are well-

formed programs, and how well-formed programs behave

when they’re executed. Models of language semantics may

be abstractly thought of as judgements over terms, where the

inclusion of syntax in a judgement encodes some meaning.

When discussing extensibility, we use judgement to refer to

all statements one could make over about abstract syntax, in-

cluding specifications of both static and run-time semantics.

For example, consider Figure 1, with the judgement 𝑡 → 𝑡 ′

expressing the reduction of terms in the 𝜆-calculus. 𝑡 → 𝑡 ′

relates (possibly distinct) syntaxes representing terms, where

𝑡 reduces to the term 𝑡 ′ iff 𝑡 → 𝑡 ′ holds for the pair of syn-
taxes (𝑡, 𝑡 ′). By defining 𝑡 → 𝑡 ′ for all terms, we encode

the semantics of “reducing a term;” a term 𝑡 reduces to 𝑡 ′

because 𝑡 → 𝑡 ′ holds for the pair of terms, and we check

if an arbitrary term reduces to another by proving that the

pair of terms satisfy the judgement.

Syntactic extension is the modification of the specifications

for the syntactic forms and classes that could potentially

make up a program. Syntactic extension is broadly useful:

in order to add language features, we would like to be able

to add new syntactic forms exposing them. But, how might

we want to change base language syntax? Is an extension

strictly additive, adding classes and cases but not modifying

existing syntax, or might an extension have the need to

modify existing syntax?

We call extensions which only add syntax additive and
extensions which change existing syntax strong. Note that
strong syntactic extensibility need not be strictly more de-

sirable than additive syntactic extensibility, as depending on

the goals of an ELF, it may not be practical to provide desired

performance or usability characteristics while supporting

strong extension. We perform an additive syntactic exten-

sion in Figure 2 to extend the 𝜆-calculus into a Scheme-like

well-scoped calculus we’ll call 𝜆-s. The syntactic portion of

this extension is the addition of a binding context Γ, which
may either be the empty set ∅ or a pair of some context and

a variable name.

𝑥 ∈ Variable
𝑡 ::= 𝑥 | 𝑡 𝑡 Γ ::= ∅ | Γ, 𝑥

𝑡 → 𝑡 ′

𝛽-red (𝜆𝑥 .𝑡) 𝑡 ′ → 𝑡 [𝑥 ↦→ 𝑡 ′]

Γ ⊢ 𝑡
Gamma

𝑥 ∈ Γ

Γ ⊢ 𝑥

Lambda

Γ, 𝑥 ⊢ 𝑡
Γ ⊢ 𝜆𝑥.𝑡

App

Γ ⊢ 𝑡 Γ ⊢ 𝑡 ′

Γ ⊢ 𝑡 𝑡 ′

Figure 2. Extension of the 𝜆-calculus with a well-scopedness
judgement, forming 𝜆-s. Additive extensions in blue.

Semantic extension provides new meaning to terms. Con-

sider again the 𝜆-s extension in Figure 2. To complete the

new language feature, we need to add the judgement Γ ⊢ 𝑡 to
encode the semantics of a "term being well-scoped." We call

the introduction of Γ ⊢ 𝑡 a judgement-level semantic exten-
sion, which is the means by which we add new judgements

or modify the dependencies between existing judgements.

Analogous to syntactic extension, we introduce the notions

of additive and strong judgement-level semantic extensibil-

ity. Here, we need only additive judgement-level semantic

extensibility since we did not need to change any existing

judgements, namely 𝑡 → 𝑡 ′.
Supposewewant to introduce types to this well-scopedness

judgement, producing a simply-typed 𝜆-calculus (STLC),
with Church-style intrinsic typing. We perform both kinds

of syntactic extension in Figure 3, using additive syntactic

extension to add a meta-variable for types, 𝜏 , and syntax for
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function types, constants, and base types. We then strongly

extend the existing syntax for terms 𝑡 , modifying the syn-

tax for functions 𝜆𝑥.𝑡 to include a type annotation, and do

similarly for contexts Γ:

𝑥 ∈ Variable
𝑇 ∈ Base Types
𝑐 ∈ Constants

𝑡 ::= 𝑥 | 𝜆𝑥 .𝑡 𝜆𝑥 : 𝜏 .𝑡 | 𝑡 𝑡 | 𝑐
𝜏 ::= 𝜏 → 𝜏 | 𝑇

Γ ::= ∅ | Γ, 𝑥 Γ, 𝑥 : 𝜏

𝑡 → 𝑡 ′

𝛽-red (𝜆𝑥.𝑡) 𝑡 ′ (𝜆𝑥 : 𝜏 .𝑡) 𝑡 ′ → 𝑡 [𝑥 ↦→ 𝑡 ′]

Γ ⊢ 𝑡 : 𝜏
Gamma

𝑥 : 𝜏 ∈ Γ

Γ ⊢ 𝑥 : 𝜏

Const

𝑐 is of type 𝑇

Γ ⊢ 𝑐 : 𝑇

Lambda

Γ, 𝑥 : 𝜏 ⊢ 𝑡 : 𝜏
Γ ⊢ 𝜆𝑥 : 𝜏 .𝑡 : 𝜏 → 𝜏 ′

App

Γ ⊢ 𝑡 : 𝜏 → 𝜏 ′ Γ ⊢ 𝑡 ′ : 𝜏
Γ ⊢ 𝑡 𝑡 ′ : 𝜏 ′

Figure 3.An extension of 𝜆-s into STLC. Additive extensions
in blue and strong in red.

In our STLC example, we use strong judgement-level ex-

tension to add the Γ ⊢ 𝑡 : 𝜏 judgement, which modifies

the scopedness judgement Γ ⊢ 𝑡 . Judgement-level extension

complete, we have a new class of statements we can make

about terms, but have not yet described any such statement.

To do so, we must also perform a rule-level semantic exten-
sion, where we extend meaning to new terms under existing

judgements. Rule-level extensions can also be either additive

or strong. Here, we use additive rule-level semantic extensi-

bility to add Rule Const, which types constants. We then use

strong rule-level extension to modify the former Γ ⊢ 𝑡 rules,
resulting in typing rules which respect our new Γ ⊢ 𝑡 : 𝜏

judgement. As it stands, no other judgements in our STLC

specification make use of the Γ ⊢ 𝑡 : 𝜏 judgement, but it

remains exposed to a user of the ELF as a judgement one can

use to describe STLC programs.

Note that additive syntactic extensions may require strong

semantic extensions in order to achieve desired behavior. For

example, sound gradual typing is a typing discipline which

allows for static imprecision in typing that induces run-time

constraint checks [20]. Often presented in literature as amod-

ification of some base type system, the run-time semantics

of a gradually typed language differ from those of the base

language, changing how existing terms are interpreted. To

add gradual types to a simply typed system, we would need

to add the unknown type, an additive syntactic extension.

Semantic extensions supporting this new syntax must be

made to existing judgements, strongly extending rule-level

semantics. We summarize our extensibility classes in Table 1.

The classes of extensibility we define map well to the ex-
pression problem, which as described by Wadler [23], is the

problem of achieving extensibility of both data and addi-

tion of functions which operate on that data. In the context

of programming languages, terms are data, and language

semantics are functions over terms. Designing ELFs that sup-

port both rule-level and judgement-level semantic extension

requires one to solve the expression problem. We require

extensibility of data to achieve syntactic and rule-level se-

mantic extension, and extensibility of functions on that data

for judgement-level semantic extension. To support either
rule-level semantic extension or judgement-level semantic

extension, one does not need to solve the expression problem.

Rule-level extension is modelled with object-oriented pro-

gramming (OOP) structures, where syntax maps to classes,

and judgements to methods called by a visitor, but adding

new methods is hard. In contrast, judgement-level exten-

sion maps to typical functional patterns, where writing new

functions which operate on an existing datatype is easy, but

adding new cases to union types requires modification of

existing functions.

Lastly, we define extension and modification. In Wadler’s

presentation, a solution to the expression problem should

allow for extension without modification and re-compilation

of (in our context) a base language’s compiler; if the original

language no longer exists as a distinct entity—a distinct unit

of compilation in the host language—the object language has

not been extended, it has been modified.

3.2 A Taxonomy for Flexibility
An embedding ELF’s choice of embedding strategy greatly

impacts the flexibility of the object language, be it deep,
shallow, hybrid [11], or something less common like compo-
sitional [24] or polymorphic [12] embeddings. The related

works discussed in this paper implement some variation of

the first three, summarized below:

• Deep embeddings encode object languages as an

AST which can be traversed and manipulated in the

host language. Whole-program transformations can

traverse the entire AST of object language programs,

and a final step in compilation transforms the object

language AST into host language code. Since the en-

coding of object language terms is different from those

of equivalent host language terms, deep embeddings

leak implementation details which prevent naive in-

teroperability with equivalent host language features.

• Shallow embeddings encode object languages di-

rectly in terms of equivalent host language function-

ality. A shallowly embedding ELF can never reason

about an AST as a whole, and as a consequence cannot

perform whole-program transformations. However,
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Table 1. Extensibility classes.

Strength
Domain Syntactic Semantic

Rule-level Judgement-level

Additive Addition of

syntactic forms

Addition of syntax to

existing judgements

Addition of new

judgements

Strong + modification of

existing syntactic forms

+ modification of judgements

over existing syntax

+ modification of

existing judgements

shallow embeddings benefit from much better host

language interoperability, as host language features

can be used directly on encoded object language terms,

as their encoding is idiomatic in the host language.

• Hybrid embeddings construct an AST as a deep em-

bedding would, upon which whole-program transfor-

mations can be defined, but allows host language fea-

tures to interact with object language terms like a shal-

low embedding. Hybrid embedded object language

terms have both an internal representation (used to

construct a whole-program AST) and a wrapper allow-

ing for direct host language interoperability.

We note that with shallow embeddings, host and object

language interoperability generally is possible at term bound-

aries; one can pass object language terms to host language

functions and vice versa. With hybrid embeddings, an object

language author must choose at which granularity to force

the construction of a complete object language AST. In order

to perform meaningful optimizations, it may be the case that

interaction between host and object language can only occur

at, for example, module boundaries.

3.3 Related Work, Taxonomized
Having established our taxonomy, we re-examine the ELFs

discussed in Section 2.

Turnstile. Recall that turnstile+ encodes language

forms as host-language macros, which can be imported from

a base language and shadowed by language extensions. Since

each macro is responsible for the transformation and type-

checking of its associated syntactic form in the object lan-

guage, macro shadowing allows turnstile+ to support

strong syntactic and strong rule-level semantic extension.

turnstile+ also supports strong judgement-level semantic

extension, as new terms can implement new judgements,

and by shadowing old terms, old judgements can be modi-

fied for existing terms. Given turnstile+ language forms

are Racket macros, which individually expand fully to Racket

core forms, turnstile+ is a shallow embedding ELF.

turnstile+ object language terms can be individually im-

ported and used in (host) language code, and a user does not

have access to arbitrary AST transformations.

syntax-spec. A Racket-embedded DSL framework,

syntax-spec provides a syntax specification language and

macro system for object languages, with a conventional com-

piler design downstream. This approach requires that all

extensions must live within an object language macro sys-

tem. This is in contrast to turnstile+, where extensions
are written using host-language level macros. Consequen-

tially, one cannot extend a syntax-spec encoded language

if it turns out that new constructs need to be introduced

to the core in order to support a desired feature, but must

instead modify the syntax-spec definition for the DSL core

in order to express novel semantics.

As an example, in STLC as we defined in Figure 3, we

could not add types previously unknown to the compiler.

In syntax-spec, object-language extensions are limited to

using macros to translate new syntax into existing core syn-

tax. That is, the object language is macro extensible [10], but

neither truly syntactically extensible nor truly semantically

extensible in our taxonomy, since the core language cannot

be extended. This is in contrast to turnstile+, where the
compiler is specified extensibly, and can be iterated upon

without clobbering the compiler for a base language.

syntax-spec also allows an object language specification to

define macros which introduce an interaction point between

host and object language terms, making syntax-spec a

hybrid embedding ELF.

LMS. LMS supports strong syntactic extension, and both

strong rule-level and strong judgement-level semantic exten-

sion. Since LMS object language constructs are encoded as

Scala classes, LMS is a deeply embedding ELF. Scala’s OOP

and trait system allows LMS to achieve these extensibility

properties, at the expense of poor host language interoper-

ability. LMS’s Rep[_] type, used to stage object language

programs, leaks into instances of object language syntax and

typing, making object language representations incompati-

ble with equivalent Scala features. LMS thus deeply embeds

its object language.

4 A Micro Embedded Framework
Wewant to determine if it is possible for a hybrid embedding

ELF to support strong syntactic, strong rule-level and strong

judgement-level semantic extensibility, while compiling a

dependently typed object language faster than turnstile+.
Ideally, we want compilation performance on par with an

object language implemented with an unrestricted choice
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Figure 4. The ELF design space, optimistically.

of compiler architecture. To evaluate this research question,

we begin developing a Racket-hosted ELF, using micros as

a syntactic frontend which elaborates into a struct-based

IR, made extensible using Racket generics. Given our anal-

ysis of related work, we can crudely draw the ELF design

space in Figure 4. Note the gap between turnstile+ and

syntax-spec/LMS; this is the gap between the extremes of

extensibility and performance we want to target with our

micro embedding framework.

We present our micro embedding strategy as a collection

of programming patterns, which we realize in Racket. To

evaluate the extensibility of micro embeddings, we imple-

ment fowl-base, a bidirectional Martin-Löf type theory

with natural, boolean, equality and Π types, which we ex-

tend independently with vector and Σ types. We then inherit

from both extensions to form fowl, which we use as a base

to further interrogate the extensibility properties of micro

embeddings. We extend the fowl type checker with grad-

ual dependent types [9] to create fowl-geq, and attempt

to add exceptional types [17] to create fowl-rett. Our IR
is unable to encode the fowl-rett extension; we discuss

future work required to support fowl-rett in Section 6. We

conclude in Section 5.1 that fowl strongly supports syntactic

and judgement-level semantic extension, but only additive

rule-level extensibility. In Section 5.2, we conclude that com-

pilation of fowl performs two orders of magnitude better

than a similar language written in turnstile+ when evalu-

ated on a dependently typed benchmark suite.

4.1 The Problem with Macros
Consider the following Racket pseudocode, shallowly embed-

ding an object language my-if construct in terms of Racket’s

native if:
1 (define-syntax (my-if stx)
2 (syntax-parse stx
3 [(_ pred con alt) #'(if pred con alt)]))

Easy, breezy, beautiful. But, what happens when we want

to transform a program that uses my-if? Suppose we’d like

to perform a static optimization on my-if, compiling my-if
to con if pred is a tautology. A naïve option is to pattern

match the syntax of pred, using some internal logic to search

for syntactic patterns that will always yield true a run time:

1 (define-syntax (my-if stx)
2 (syntax-parse stx
3 [(_ my-true con alt) #'con]
4 [(_ (my-not my-false) con alt) #'con]
5 ;; ... and many more
6 [(_ pred con alt) #'(if pred con alt)]))

In general, our macro could thread some context through

expansion to aid in symbolic execution, making this ap-

proach effective. However, it is also fragile: any change to

program syntax, such as macro extensions of the source lan-

guage, defeats this optimization. If we add new core syntax,

we need tomodify my-if to include those cases as well. This

fails to meet our criterion for extensibility.

Suppose then that we require all forms to expand to their

optimized core representation, and use local-expand to

invert expansion order, expanding sub-expressions first into

core forms. All macro extensions will be elaborated away,

and core forms will optimize themselves if possible. Then,

we can implement my-if as follows.

1 (define-syntax (my-if stx)
2 (syntax-parse (local-expand stx)
3 [(_ #t con alt) #'con]
4 ;; ... and many more
5 [(_ pred con alt) #'(if pred con alt)]))

Now, we’ve rediscovered the implementation strategy

used by turnstile+! In turnstile+, sub-terms are type

checked and manipulated by invoking local-expand, al-
lowing extensions to be transparent to existing macros. For

tasks like normalization, turnstile+ can parse Racket core

forms as the core IR.

Unfortunately, while extensible, this approach causes per-

formance problems. Using local-expand and then includ-

ing the emitted syntax object in our macro’s output can

cause quadratic expansion times, since the emitted syntax

object (and all of its sub-expressions) will be re-expanded.

For computationally intensive passes, such as dependent

type checking algorithms, relying on syntax objects (an im-

mutable linked list data structure) hampers performance

optimizations we might want to perform.

All of these problems stem from macros expanding into

syntax objects, and staying in the macro expander. So why

not elaborate into something else, and interrupt macro

expansion?

To implement this approach, we can usemicros [14], which
are transformers from syntax to a core IR, rather than syntax

to syntax. Each micro expands into a core IR term, repre-

sented as an arbitrary data structure, and no more macro

expansion happens on it. For example, we might define a

my-if micro using structs as our IR representation.
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1 (begin-for-syntax
2 (struct if-ast (pred con alt)))
3 (define-syntax (my-if stx)
4 (syntax-parse stx
5 [(_ pred con alt)
6 (if-ast (local-expand #'pred)
7 (local-expand #'con)
8 (local-expand #'alt))]))

This yields a deep embedding. If we use (compile-time) structs

with generic methods attached, we can expand into an ex-

tensible core IR with many additional extensible compiler

passes, such as type checking, before eventually shallow

embedding back into syntax objects. This micro cannot be

used by Racket’s macro expander directly, since the macro

expander expects transformers to produce syntax objects.

We will need to trick the expander into letting us produce

other data structures.

In the rest of this section, we present using this approach

to implement fowl-base, an extensible dependently typed

language hybrid embedded into Racket.

4.2 fowl-base-syn
fowl-base is two Racketmodules. The first, fowl-base-syn,
uses micros to define the syntax of fowl-base and its elab-

oration into an IR defined in the module fowl-base-sem.
Like turnstile+ and syntax-spec, fowl-base’s mi-

cros are written using Racket macros. fowl-base-syn ex-

ports all defined micros, which can be imported either indi-

vidually for term-level interoperability, or as a Racket hash-

lang in which a user can write fowl-base language pro-

grams. Figure 5 includes the micro definition for if, which
expands into an abstract syntax representation.

Racket’s module system makes it easy to extend our micro

embeddings: an extension imports the syntax and semantics

modules from a base language, and exports its own language

forms, shadowing the base language. To perform a weak

syntactic extension to fowl-base, we define a new micro in

our extension. If we desire strong extension, this new micro

can shadow the name of the old micro we wish to override.

Modules also allow for separate compilation of a base and

extended language.

We want micros to expand into structs, but Racket macros

are syntax to syntax transformers; we need a way to return

data instead. We implement micros on top of macros using

the mule pattern demonstrated in Figure 5. The mule pattern
creates a dummy piece of syntax, #’eeyore, and attaches

to it the micro-expansion of the term as metadata (using

syntax properties). The dummy syntax requires no further

expansion, avoiding re-expansion costs. Ourmicros all follow

this pattern, using a macro to define surface syntax, and the

mule pattern to compose and return our IR representation,

carrying it through macro expansion. elab-to-structs
is used to recursively expand micros, returning the struct

representations of child terms.

1 (define eeyore void)
2

3 (begin-for-syntax
4 (define mule #'eeyore)
5 (define (burden-mule expansion)
6 (syntax-property mule 'expansion expansion))
7 (define (unburden-mule m)
8 (syntax-property m 'expansion))
9

10 (define (elab-to-structs e)
11 (define idx (syntax-local-make-definition-context))
12 (syntax-parse (local-expand e 'expression '() idx)
13 [e:expanded-term (unburden-mule #'e.body)])))
14

15 (define-syntax (if stx)
16 (syntax-parse stx
17 [(_ pred con alt)
18 (burden-mule (fi:if-term (elab-to-structs #'pred)
19 (elab-to-structs #'con)
20 (elab-to-structs #'alt)))]))

Figure 5. An excerpt of fowl-base-syn demonstrating the

mule micro pattern.

4.3 fowl-base-sem
fowl-base-sem defines mutable structures, one for each

fowl-base language term. Racket structures are named

records, which can optionally support generic methods (or
in OOP nomenclature, interface methods) that can be called

on any instance of a structure implementing the generic.

Using structures as our IR representation improves perfor-

mance over a syntax object representation, as structure fields

have constant time access, and mutability allows the IR to

be manipulated in place by language transformations.

fowl-base-sem also defines rules and judgments over

the struct IR. To maintain extensibility, each fowl-base
judgement is defined as a generic interface. To add a judge-

ment rule for a fowl-base term, we attach an implementa-

tion for the judgement’s generic interface to the structure in

fowl-base-sem representing the fowl-base term.

Structs in an extension can implement a generic method

for a judgement related to their AST node, giving us additive

rule-level semantic extension. Note that this requires that

judgement rules are syntax-directed. Additive judgement-

level extensibility is also easy: extensions can define a new

generic interface for new judgements, using #:defaults to

implement rules for base language structs.

We see generics as judgements in practice in Figure 6.

fowl-base is a bi-directionally typed language, so terms

may implement either a type synthesis judgement, a type

checking judgement, or both. In Figure 6 we define the syn-

thesis and check judgements of fowl-base and a portion

of the internal representation of suc, the successor con-

structor for Peano numerals. Here, we implement the in-

ference rule for the synthesis judgement. The statement

#:methods gen:ir-elaborable denotes that suc imple-

ments the generic ir-elaborable interface, and thus the
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elab-ir-synth! and elab-ir-check! judgements. The

choice to define both synth! and check! under the same

interface is one of convenience, since in fowl-base all terms

happen to implement both judgements. Unlike turnstile+,
the synthesis judgement for fowl-base is able to mutate

structures in place, meaning that when fowl-base-syn
expands fowl-base surface syntax into fowl-base-sem
structures, the synthesis and check judgements do not allo-

cate and return a new syntax tree, but instead manipulate

the input abstract syntax in place.

1 (define-generics ir-elaborable
2 [elab-ir-synth! ir-elaborable t-env v-env r-env]
3 [elab-ir-check! ir-elaborable t t-env v-env r-env])
4

5 (parameterize-judgement elab-ir-synth!)
6 (parameterize-judgement elab-ir-check!)
7

8 (serializable-struct
9 suc term (nat) #:mutable #:transparent
10 #:methods gen:ir-elaborable
11 [(define (elab-ir-synth! e t-env v-env r-env)
12 (match-define (suc n) e)
13 (let ([n~ (elab-ir-check!$ n Nat
14 t-env v-env r-env)])
15 (when n~ (set-suc-nat! e n~))
16 (values #f Nat)))])

Figure 6. An excerpt of fowl-base-sem demonstrating a

judgement and term definition.

While the patterns we’ve covered thusfar suffice to provide

additive extensibility, they do not provide strong semantic

extensibility. For strong extensibility, we need some way

to dynamically bind rules and judgements, so that we can

override base language behavior with new behavior defined

in an extension. To achieve this, we introduce interposition

points for judgements using Racket parameters, which can

be dynamically rebound. We call this the extensible generics
pattern.

The extensible generics pattern introduces a parameter

for each generic, which acts as an interposition point for the

judgement. All extensible generics call their implementation

through this parameter, so by modifying the parameter, the

judgement can be strongly extended.

In Figure 6 we call parameterize-judgement, a helper
macro that uses inserts a parameter for fowl-base judge-

ments. We present the full definition in Figure 7. Given

the name of a judgement’s generic function A, the macro

wraps A in a parameter using make-parameter, and binds

it to A-prm. parameterize-judgement also creates a mem-

oized accessor procedure for this parameter, named A$. We

then use A$ in the rest of fowl-base to invoke the judge-

ment encoded by our original function A. Memoization is

used to improve compile time performance, as parameter

bindings do not change as a micro embedded language com-

piler is running, but are accessed regularly.

1 (define-syntax (parameterize-judgement stx)
2 (syntax-parse stx
3 [(_ gen)
4 (let ([name (format-id #'gen "~a-prm" #'gen)]
5 [acc (format-id #'gen "~a$" #'gen)])
6 #`(begin (define #,name (make-parameter gen))
7 (define #,acc (memo-prm #,name))))]))

Figure 7. parameterize-judgement macro for parametric

binding of object language judgements.

Introducing an interposition point for judgement forms

gives us strong judgement-level semantic extensibility.

Thanks to these interposition points, languages extending

fowl-base can modify judgements over fowl-base terms

without requiring the recompilation of fowl-base-sem.
Since A-prm is dynamically bound, we can redefine it in

a language extension, resulting in all instances of A$ within

scope of that redefinition (including those of the base lan-

guage) changing. We give an example of this with fowl-geq
in Section 5.1.2.

Not shown is a pattern for obtaining strong rule-level
semantic extensibility. To do so, we would require interpo-

sition points for structs, allowing us to rebind constructors

for base language structs. Unfortunately, this was only re-

alized during the implementation of fowl-rett, and thus

fowl-base achieves only weak rule-level semantic exten-

sibility. Section 5.1.3 expands on the consequences of this

omission, and we consider approaches for fixing this in Sec-

tion 6.

5 Evaluation
To evaluate the extensibility of our micro embedding ap-

proach, we extend fowl’s type system. To quantify the per-

formance of micro embeddings, we compile a suite of depen-

dently typed programs in both fowl and Cur, a dependently
typed calculi implemented in turnstile+.

fowl-vec

fowl-sigma

fowl-base fowl

Figure 8. fowl’s diamond inheritance structure.

5.1 Extensibility
5.1.1 Additive Extension. To test additive extensibility,
we define two extensions to fowl-base, fowl-vec and

fowl-sigma, and combine them to create fowl; Figure 8

summarizes this inheritance pattern. In Figure 9 we include

an excerpt of fowl-vec’s implementation. Here, fowl-vec
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1 ;; fowl-vec-sem
2 (require fowl-base-sem)
3 (provide (all-defined-out)
4 (all-from-out fowl-base-sem))
5

6 (serializable-struct vec-term ground (len type) ...)

1 ;; fowl-vec-syn
2 (require fowl-base-syn (for-syntax fowl-vec-sem))
3 (provide (all-from-out fowl-base-syn)
4 Vec nil :: ind-Vec)
5

6 (define-syntax (Vec stx)
7 (syntax-parse stx
8 [(_ len type)
9 (burden-mule (vec-term (elab-to-structs #'len)
10 (elab-to-structs

#'type)))]))↩→

Figure 9. An excerpt of fowl-vec-syn and -sem.

imports fowl-base and defines new macros and structures

for each of fowl-vec’s new terms, exporting both the new

definitions and those original to fowl-base. fowl-sigma is

written similarly, and is omitted here. Since we never needed

to modify fowl-base, it remains its own language, and can

be used as before in fowl-base language programs.

fowl can then be defined by the code in Figure 10. Since

both fowl-vec and fowl-sigmamake additive, nonconflict-

ing extensions, all that is required is a simple dependency

merge. We conclude that fowl supports at least additive syn-

tactic extension and additive rule-level semantic extension.

1 ;; fowl-syn
2 (require fowl-vec-sem fowl-sigma-sem)
3 (provide (all-from-out fowl-vec-sem fowl-sigma-sem))

1 ;; fowl-sem
2 (require fowl-vec-syn fowl-sigma-syn)
3 (provide (all-from-out fowl-vec-syn fowl-sigma-syn))

Figure 10. The entirety of fowl-syn and fowl-sem.

5.1.2 Judgement-level Semantic Extension. To test

judgement-level semantic extensibility, we extend fowl with

gradual types. GEq [9] is a dependently typed language with

gradual types and sound equality over gradually typed terms.

Relative to Bidirectional-CIC, GEq modifies the semantics

and syntax of J, Equal and refl, and introduces a new

judgement we name elab-geq-coerce-unk!, that coerces
the unknown type to a term with a type requested by a check

judgement.

In order for fowl-geq to coerce unknown terms in its

check judgement, we use strong judgement-level extensibil-

ity to shadow fowl’s old check judgement with the modified

one we define in fowl-geq-sem. Figure 11 shows how we

achieve this with Racket’s parameters: When calling into the

entry point of fowl’s type checker, we parameterize the

call with the function implementing fowl-geq’s instance of
the check judgement, rebinding all uses of check in fowl.
We also use strong syntactic extension in order to shadow

fowl’s definitions for J, Equal and refl, extending their

syntax with that required by GEq. The new equality terms

elaborate into new J-geq, equal-geq and refl-geq struc-

tures in fowl-geq-sem. While normally we’d need to use

strong rule-level extensibility to revise the check judgement

for the old J, Equal and refl terms, they are never con-

structed by any other term in fowl, and therefore the old

check implementation for these terms will never be invoked

by a fowl-geq program.

1 (define (elab-geq-constr-synth! e h args
2 t-env v-env r-env) #| Implementation ... |# )
3

4 (define (elab-geq e)
5 (parameterize
6 ([elab-ir-constr-synth!-prm elab-geq-constr-synth!]
7 [type-consistent?-prm type-consistent-geq?])
8 (define-values (e^ e^-t) (elab-ir-synth!$ e

(empty-env) (empty-env) (empty-env)))↩→
9 (values (if e^ e^ e) e^-t)))

Figure 11. A snippet of fowl-geq-sem rebinding a judge-

ment form.

5.1.3 Rule-level Semantic Extension. To test rule-level

semantic extensibility, we extend fowl with exceptions. Rea-

sonably Exceptional Type Theory [17], or RETT, is an ex-

tension of CIC that adds exceptions that can be thrown and

caught. Unlike CIC, which has a single hierarchy of type

universes ((Type 0) being the smallest of such universes in

fowl-base, represented by the sort-term structure type

in fowl-base-sem), RETT has three separate universe hier-

archies. As a consequence, sort-term now needs to store an

additional field: not only the universe level, but also which

hierarchy that universe belongs to; let’s call its replacement

sort-term-rett. In this case, only some of fowl’s terms

need to interact with sort-term-rett any differently than

they would with sort-term.
Unfortunately, the evaluated version of fowl does not

have interposition points for abstract syntax constructors.

Consequentially, we cannot replace all instances of the

sort-term constructor in fowl with sort-term-rett, de-
fined in fowl-rett, without replacing the judgements that

refer to sort-term. To deal with this, we have two options:

1. Replace all terms that interact with sort-term with

new fowl-rett terms, as we did with fowl-geq.
2. Create new check and synthesis judgements, taking

advantage of strong judgement-level extensibility, and

replace the judgements in fowl with these new judge-

ments, which support sort-term-rett.
While both options would work, we hesitate to legitimize

either as an extension; we’d be replacing a large portion of
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either fowl terms, or the synthesis and check judgements in

fowl, that have nothing to do with the change we actually

want to make. Besides being annoying, it’s bad programming

practice—changes and fixes made to fowl will not propagate

to fowl-rett. To fix this, we need interposition points on

struct constructors, but this is nontrivial to support with

generics; we discuss this further in Section 6.

5.1.4 Micro Embeddings, Taxonomized. We conclude

the following:

1. Micro embeddings can support strong syntactic ex-

tension, exemplified by fowl-geq, where we are able
to redefine the syntax for J, Equal and refl without

modifying fowl.
2. Micro embeddings can support additive rule-level se-

mantic extension, since we are able to additively ex-

tend fowl-base with semantics for vectors and Σ
types in fowl-vec and fowl-sigma, implementing

existing fowl-base judgements. However, when im-

plementing fowl-rett, our implementation oversight

means we are unable to replace sort-term without

also modifying judgements. Micro embeddings are

therefore not shown to support strong rule-level se-

mantic extension, but introducing interposition points

for struct methods would resolve this issue.

3. Micro embeddings can support strong judgement-level

semantic extension, since we are able to add gradual

types and judgements in fowl-geq, and also modify

the original check judgements in fowl-base.

5.2 Performance
To evaluate the performance of our micro embedding ap-

proach, we benchmark fowl against cur [5] (a dependently

typed proof assistant written in the turnstile+ ELF)

and against smalltt [13] (a small non-extensible high-

performance dependently typed language implementation)

on a suite of dependently typed programs.

cur is a Racket hashlang, meaning that a cur program

can be compiled to a Racket binary, performing all macro

expansion into Racket core forms and type checking as spec-

ified in cur’s turnstile+ implementation, resulting in an

executable file. fowl behaves similarly, as it too is a Racket

hashlang, compilation of which performs type checking and

elaboration into Racket. Thus, fowl and cur benchmarking

times are the complete compilation time including all pars-

ing, expansion and compilation steps, including those of the

Racket compiler.

In contrast, smalltt does not output compiled binaries,

but does parse and type check programs. We use smalltt to

represent the absolute best-case scenario for performant ELFs

like LMS and syntax-spec. smalltt benchmarks favorably

against all mainstream dependently typed languages (being

one to two orders of magnitude faster than Agda [15], Coq

[16], Lean [22]
1
, and Idris 2 [4], as seen in Table 3) and

uses both efficient term representation and optimizations to

its normalization algorithm. Recall, cur has the additional

work of re-walking macro expansions, and also has no algo-

rithmic optimizations. fowl elaborates into an efficient IR

representation before performing type checking (not need-

ing to re-walk the AST), and performs elaboration in place,

but otherwise does not make any efforts to avoid repeated

work during normalization, and has no algorithmic optimiza-

tions. Any performance gains or losses relative to cur are

thus predominantly due to fowl’s internal representation of

language forms and hybrid embedding style. Since both cur
and fowl share the same reader, runtime and compiler, their

performance can be directly compared. This is not the case

for smalltt, which we include only as a goalpost.

We use hyperfine [18] to estimate mean compilation

time for cur and fowl across each benchmark. As config-

ured, hyperfine reports the average duration of ten execu-

tions of raco make—which invokes the Racket compiler—

on each benchmark program. Before these ten timed runs,

three warm-up runs are performed and discarded to reduce

the impact of cold processor caches. All benchmarks are

executed in the same directory on the same 16-core Intel

Skylake server machine with 16384 KB of L1 cache per core

and 128 GB of total RAM. Each benchmark is executed se-

quentially, with a single core active at any one time. All

benchmarking runs were completed within a 2-day period,

with some cur runs not completing because the machine ran

out of memory before type checking could complete. These

runs are marked DNF in Table 2, with compilation times

before failure all exceeding half an hour. For benchmarks of

smalltt, we follow the procedure described in Kovács [13]

and manually reload the benchmark in the smalltt repl

thirteen times, discarding three warm-up runs. The mean

and standard deviation in seconds for all runs is reported in

Table 2.

In Figure 12 we plot mean compilation times for each lan-

guage and benchmark. Note a clear trend across all bench-

marks: fowl is about 1000x slower than smalltt across the

board, and cur is 100x slower that fowl, when it could even

compile the benchmark program. We discuss each bench-

mark in more detail below:

asymp-small. This benchmark defines an inductive vec-

tor type and constructs a 100-element vector, with each ele-

ment being the base universe type, (Type 0). The fowl ver-

sion of this benchmark uses the primitive vector defined in

the fowl-vec extension; both the cur and smalltt versions

1Lean deserves note, as Lean-4 has an extensible grammar which elabo-

rates to a fixed core type theory referred to as the Lean-4 kernel. Lean-4’s
extensions must all be transformed into a corresponding kernel representa-

tion, via an extensible elaborator from the surface grammar to the kernel

language. Lean-4 is thus akin to syntax-spec with a dependently typed

back-end.
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Table 2. Compilation times for cur and fowl, and load times for smalltt on a subset of the smalltt suite.

Benchmark cur 𝜇 cur 𝜎 fowl 𝜇 fowl 𝜎 smalltt 𝜇 smalltt 𝜎

asymp-small 29.1286 s 0.0501 s 0.7839 s 0.0057 s 0.0024 s 0.0005 s

asymptotics DNF DNF 0.9665 s 0.0073 s 0.0251 s 0.0030 s

conv-eval 1590.8327 s 2.7064 s 4.8969 s 0.0228 s 0.0017 s 0.0009 s

stlc-small 362.1032 s 0.9374 s 1.8499 s 0.0084 s 0.0017 s 0.0002 s

stlc-small5k DNF DNF 89.0571 s 0.9266 s 0.0525 s 0.0015 s

stlc-small10k DNF DNF 177.9284 s 1.2992 s 0.1031 s 0.0028 s
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Figure 12. Compilation times for cur and fowl, and load

times for smalltt on a subset of the smalltt benchmark

suite. Omitted bars signify test execution failure.

use an inductively defined vector data type. asymp-small
does not exist in the smalltt benchmark suite, and is a

pared down version of the asymptotics benchmark. We in-

clude asymp-small since cur terminates without running

out of memory on our benchmarking machine.

asymptotics. This benchmark is similar to asymp-small,
but constructs a 1000-element vector. smalltt displays a

nearly 10x increase in type checking time compared to

asymp-small, implying a roughly linear increase in algo-

rithm run time with term depth. fowl took barely longer

to compile the 1000 element vector than it did to compile

asymp-small, and thus type checking did not constitute the
majority of asymp-small’s compilation time. cur failed to

compile the 1000 element vector with 128GB of available sys-

tem memory. asymptotics is a subset of the asymptotics

benchmark present in the smalltt repository, as it sufficed

to demonstrate the divide in cur, fowl and smalltt’s per-
formance.

conv-eval. This benchmark defines inductive naturals (us-

ing built-in types in fowl), addition andmultiplication (using

standard library functions in cur), then uses these functions

to construct larger and larger natural numbers. The version

of conv-eval in the smalltt repository constructs both

larger numbers and has additional tree constructions, but

fowl lacks the ability for us to define inductive data types

and both fowl and cur failed to type check the larger num-

bers present in the original benchmark. conv-eval high-

lights the importance of glued evaluation, a mechanism by

which smalltt avoids normalization for syntactically equiv-

alent terms. Neither cur nor fowl implement glued evalu-

ation, and therefore conv-eval shows the largest perfor-

mance divide between fowl and smalltt.

stlc-small. This benchmark first church-encodes a simply

typed lambda calculus (STLC) and type checks the function

𝜆𝑥 : (⊥ → ⊥).𝜆𝑦 : ⊥.𝑥 (𝑥 (𝑥 (𝑥 (𝑥 (𝑥𝑦))))). The benchmark

file has a length on the order of 50-100 lines of code (loc). All
of cur, fowl, and smalltt perform as expected: fowl suf-

fers compared to smalltt, since the complexity of church-

encoded STLC terms is significant and fowl does not avoid

the re-computation of normal forms. cur performs much

worse, as the high term depth requires significant computa-

tional effort to reify into cur syntax after expansion. Both

the fowl and cur benchmarks are written with explicit con-

text types, as neither perform unification and type inference,

unlike smalltt. smalltt thus performs additional work

during type checking. stlc-small is unmodified from the

smalltt benchmark suite.

stlc-small5k. This benchmark executes 96 copies of

stlc-small, totaling on the order of 5000-10000 loc. fowl
and smalltt both take 50x longer on stlc-small5k than

on stlc-small. cur runs out of memory and fails to com-

pile the benchmark. stlc-small5k is unmodified from the

smalltt benchmark suite.

stlc-small10k. This benchmark executes 192 copies of

stlc-small. fowl and smalltt both take 2x longer on

stlc-small10k than on stlc-small5k. This is ideal, as
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Table 3. Excerpt of reported type checking time of benchmarks in the smalltt benchmark suite in Kovács [13], with scaled

fowl and cur compilation times for comparison.

Benchmark smalltt Agda Coq Lean Idris 2 fowl (x0.7) cur (x0.7)

stlc-small 0.0030 s 0.1060 s 0.1280 s 0.0730 s 0.5420 s 1.2950 s 217.2620 s

stlc-small5k 0.0370 s 4.4450 s 0.7620 s 2.6490 s 6.3970 s 62.3530 s DNF
stlc-small10k 0.0720 s 22.8000 s 1.3880 s 5.2440 s 13.4960 s 124.5500 s DNF

we see a linear increase in runtime over stlc-small5k. cur
again runs out ofmemory and fails to compile the benchmark.

stlc-small10k is unmodified from the smalltt suite.

We conclude that fowl performs about 10x slower than

most modern dependently typed languages, far better than

the 1000x slower performance of cur. We do so by com-

paring our benchmark runs for smalltt with the values

reported in Kovács [13], which can be seen in Table 3. Our

runs for smalltt are 30% slower than those reported by

Kovács [13], so we include our measured compilation times

for cur and fowl scaled by a factor of 0.7 for comparison.

This performance is, however, given no effort put towards
optimizing fowl’s type checking algorithm, only by micro

embedding fowl into an efficient struct based IR that allows

us to perform IR elaboration in place. We expect implement-

ing algorithmic optimizations will get the performance of

fowl significantly closer to the state of the art, but doing so

is left to future work. Crucially, fowl has roughly linear, not

quadratic, increases in compilation time with increased term

complexity, meaning that fowl’s term representation is not

limiting object language performance, unlike turnstile+.

6 Future Work
Currently, our micro embedding approach is a series of de-

sign patterns. This is, of course, antithetical to the Scheme

ethos. Instead, these design pattern should be wrapped up in

some abstractions, ideally implemented using macros (what

else?). We conjecture we need three new abstractions, and

have sketched an implementation of one.

micros. We can wrap up our mule pattern for implement-

ing micros into its own define-micro form for defining

micros. This is easily done: define-micro should bind an

identifiers in the transformer environment to a function from

syntax to an arbitrary IR representation, such as structs.

It would automatically wrap the output in the mule pat-

tern to smuggle the IR through the macro expander. The

micro abstraction should also provide a expand-micros
form that locally expands until a fully expanded mule, like

our elab-to-structs implementation in Figure 5 or like

the custom expand function provided by syntax-spec. The
difficulty for us is in generating an extensible syntax class,

called expanded-term in Figure 5, but this is easily done

with another pattern using a parameter that holds an open

recursive syntax parser that is extended by each micro. A

prototype implementation is available as syntax/micros
in the software artifact [3].

extensible generics. Our pattern for extending judge-

mentsmight be abstracted into extensible generics for structs.

We would define a form extensible-generic for defining

new extensible generics, where the generic function indi-

rects through an interposition point (a parameter). Later,

the generic could be updated with new functionality, even

changing its arity. Our experiments so far suggest this more

general abstraction is more difficult to implement than our

more limited pattern for extensible judgements. Generics

introduce a struct property that is attached to the struct, and

this property enables accessing the generic function directly,

not through our interposition. The struct property itself can-

not be easily interposed upon. It might be that we instead

need to introduce a more limited abstraction for extensible

judgements.

extensible structs. The next abstraction we need is an

extensible struct: structs that can be updated later to include

new fields. After updating, old users of the struct should

implicitly create the new struct, and matching or project-

ing from the struct should work seamlessly, so this is not

merely struct subtyping. This would be necessary to support

the RETT extension properly. We would extend our design

pattern for extensible judgements to structs: we would in-

troduce an interposition point for each struct constructor,

accessor, and match expander using a parameter. Calls to the

“constructors”, e.g., would actually dereference the current

constructor from the parameter. A prototype is available in

the software artifact [3], although it does not support all nec-

essary features, such as extending the matching expander.
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